A Novel Efficient Pairing-Free CP-ABE Based on Elliptic Curve Cryptography for IoT

Ciphertext-policy attribute-based encryption (CP-ABE) is a promising cryptographic technique that integrates data encryption with access control for ensuring data security in IoT systems. However, the efficiency problem of CP-ABE is still a bottleneck limiting its development and application. A widespread consensus is that the computation overhead of bilinear pairing is excessive in the practical application of ABE, especially for the devices or the processors with limited computational resources and power supply. In this paper, we proposed a novel pairing-free data access control scheme based on CP-ABE using elliptic curve cryptography, abbreviated PF-CP-ABE. We replace complicated bilinear pairing with simple scalar multiplication on elliptic curves, thereby reducing the overall computation overhead. And we designed a new way of key distribution that it can directly revoke a user or an attribute without updating other users’ keys during the attribute revocation phase. Besides, our scheme use linear secret sharing scheme access structure to enhance the expressiveness of the access policy. The security and performance analysis show that our scheme significantly improved the overall efficiency as well as ensured the security.

***

Note from Journals.Today : This content has been auto-generated from a syndicated feed.